Inference in Credal Networks Through Integer Programming

نویسندگان

  • Cassio Polpo de Campos
  • Fabio Gagliardi Cozman
چکیده

A credal network associates a directed acyclic graph with a collection of sets of probability measures; it offers a compact representation for sets of multivariate distributions. In this paper we present a new algorithm for inference in credal networks based on an integer programming reformulation. We are concerned with computation of lower/upper probabilities for a variable in a given credal network. Experiments reported in this paper indicate that this new algorithm has better performance than existing ones for some important classes of networks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EGL2U: Tractable Inference on Large Scale Credal Networks

Credal networks [1, 2] generalize Bayesian networks [3] by associating with variables (closed convex) sets of conditional probability mass functions, i.e., credal sets1, in place of precise conditional probability distributions. Credal networks are models of imprecise probabilities [4], which allow the capturing of incompleteness and imprecision of human knowledge and beliefs [1]. Credal networ...

متن کامل

Inference in Credal Networks using Multilinear Programming

A credal network is a graphical tool for representation and manipulation of uncertainty, where probability values may be imprecise or indeterminate. A credal network associates a directed acyclic graph with a collection of sets of probability measures; in this context, inference is the computation of tight lower and upper bounds for conditional probabilities. In this paper we present new algori...

متن کامل

Set-Based Variational Methods in Credal Networks: the SV2U Algorithm

Abstract. Graphical models that represent uncertainty through sets of probability measures are often referred to as credal networks. Polynomial-time exact inference methods are available only for polytree-structured binary credal networks. In this work, we approximate potentially intractable inferences in multiconnected binary networks by tractable inferences in polytree-structures. We propose ...

متن کامل

Imprecise Probabilistic Graphical Models: Equivalent Representations, Inference Algorithms and Applications

Credal networks are probabilistic graphical models that extend Bayesian nets to deal with imprecision in probability, and can actually be regarded as sets of Bayesian nets. Credal nets appear to be powerful means to represent and deal with many important and challenging problems in uncertain reasoning. The counterpart of having more freedom in the modeling phase is an increased inferential comp...

متن کامل

Local Computation in Credal Networks

The goal of this contribution is to discuss local computation in credal networks — graphical models that can represent imprecise and indeterminate probability values. We analyze the inference problem in credal networks, discuss how inference algorithms can benefit from local computation, and suggest that local computation can be particularly important in approximate inference algorithms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007